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Question 1: What is the optimal choice and duration of
antibiotic therapy in polymicrobial PJI/SSI?
Recommendation:
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The optimal choice and duration of antimicrobial therapy in
polymicrobial PJIs remain unknown. Antimicrobial therapy for
polymicrobial PJI should be targeted at the organisms that are
present. There is limited literature on the antibiotic treatment
as polymicrobial PJIs are very heterogenous. We recommend 4-6
weeks of intravenous, or highly available oral antimicrobial
therapy, that is based on the in vitro susceptibilities of the in-
dividual microorganisms, patient allergies, and intolerances.

Level of Evidence: Limited

Delegate Vote: Agree: 92%, Disagree: 5%, Abstain: 3% (Super
Majority, Strong Consensus)

Rationale:

Polymicrobial periprosthetic joint infection (PJI), as identified by
isolation of multiple organisms by culture, constitutes between 6%
and 37% of reported PJI [1—4]. Patients with polymicrobial PJI have
worse outcomes when compared to monomicrobial PJI and culture-
negative PJI regardless of the surgical treatment [5,6]. Studies have
shown lower success rates of polymicrobial PJIs (37%-67%) compared
to that of monomicrobial PJIs (69%-87%) [5—9]. The treatment often
requires broad-spectrum antibiotics or multiple antibiotics given
that multiple organisms need to be targeted. Unfortunately, there is
minimal literature regarding the optimal choice and duration of
antibiotic therapy in patients with polymicrobial PJI. This is largely
due to the fact that polymicrobial PJIs are very heterogenous and
may represent many combinations of infecting organisms including
fungi. However, there are many studies that have demonstrated that
polymicrobial PJIs are associated with certain bacteria. Marculescu
and Cantey found that methicillin-resistant Staphylococcus aureus
(26.4% vs 7.1%) and anaerobes (11.7% vs 2.8%) were more common in
polymicrobial PJIs. In addition, Tan et al reported that the isolation of
Gram-negative organisms (P < .01), enterococci (P < .01), Escherichia
coli (P < .01), and atypical organisms (P < .01) was associated with
polymicrobial PJI. Furthermore, many of these organisms are asso-
ciated with high failure rates and the optimal antimicrobial for these
organisms is still being defined [10,11].

Although there are no randomized studies to compare the
duration of treatment for polymicrobial PJIs compared to mono-
microbial PJIs, patients treated for polymicrobial P]Is received 4-6
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weeks of antimicrobial therapy [6—8], with the choice of an initial 2
weeks of parenteral antimicrobial therapy followed by 4 weeks of
oral and highly bioavailable antibiotic therapy [7,8]. Current Infec-
tious Diseases Society of America guidelines, while not specifically
addressing polymicrobial PJIs, suggest 4-6 weeks of pathogen-
specific intravenous or highly bioavailable oral antimicrobial ther-
apy, which does not differ from the treatment of monomicrobial
PJls [12].

A study done by Moran et al [3] on 112 patients showed that
polymicrobial organisms were present in 46.7% in the early post-
operative period (within 3 months after prosthesis implantation).
Although in this study Gram-negative organisms were seen only in
8% of the polymicrobial isolates, among these isolates were or-
ganisms classically associated with chromosomal Amp C inducible
beta-lactamases (Enterobacter cloacae, Serratia spp, Morganella
morganii) and resistant Acinetobacter spp. These findings along
with a high rate of beta-lactam resistance among coagulase-nega-
tive staphylococci have led the authors to recommend a broad-
spectrum empirical antimicrobial coverage with a glycopeptide
and a carbapenem [3]. In contrast, a study by Sousa et al [13] found
no increased prevalence of polymicrobial infection in the early
postoperative period, but they too recommend a carbapenem and
vancomycin as empirical antimicrobial therapy for chronic and
hematogenous infections when polymicrobial infection was
present.

When selecting empirical antimicrobial therapy for poly-
microbial PJls, it is therefore important to be aware of the local and
institutional Gram-negative and Gram-positive resistance pattern.
Broad-spectrum antimicrobials should be stopped as soon as sus-
ceptibility results are available, and effective antimicrobials with
the narrowest spectrum of activity should be selected for
completing the therapy.

Given that outcomes are poor with polymicrobial PJIs, chronic
suppression may be warranted as multiple studies have demon-
strated increased survivorship with the addition of oral antibiotics
[14,15]. Frank et al [ 14] demonstrated that patients treated with oral
antibiotics failed secondary to infection less frequently than those
not treated with antibiotics (5% vs 19%; P =.016) in a prospective
randomized controlled trial.

Search Methodology

A PubMed search for the MeSH terms ((“Infection” [Mesh]) AND
(“Prostheses and Implants” [Mesh] OR “Prosthesis Implantation”
[Mesh] OR “Prosthesis-Related Infections” [Mesh] OR “Prosthesis
Failure” [Mesh])) AND “Coinfection” [Mesh] as well as for the terms
polymicrobial [All Fields] AND (“joints” [MeSH Terms] OR “joints”
[All Fields] OR “joint” [All Fields]) AND (“infection” [MeSH Terms]
OR “infection” [All Fields]) on February12, 2018 revealed a total of
n = 161 results. All publications were screened and evaluated for
relevance regarding the research question and duplicates.

Question 2: What systemic antibiotic therapies should be
used in patients with SSI/PJI caused by resistant organisms?

Recommendation:

The choice of antibiotic therapy in patients with surgical site
infection or periprosthetic joint infection (SSI/PJI) caused by
resistant organisms is not fully answered by literature. There are
a number of antibiotic choices available for patients with SSI/PJI
caused by resistant organisms. The antibiotic selection process
should consider patient comorbidities, mode of administration,
risk of Clostridium difficile, need for monitoring, allergy profile
of the patient, intolerance, regional resistance patterns, cost,
and availability. Ideally, apart from having activity against the
resistant organisms, antibiotic choice should have good bone
and soft tissue penetration and activity against biofilm.

Consultation with infectious diseases specialists and clinical
microbiologists is warranted in these cases.

Level of Evidence: Limited

Delegate Vote: Agree: 96%, Disagree: 2%, Abstain: 2% (Unan-
imous, Strongest Consensus)

Rationale:

Success rates in the treatment of periprosthetic joint infection
(PJI) produced by resistant bacteria are lower than those from
sensitive organisms, resulting in an increase in morbidity and cost.
Successful treatment requires a multidisciplinary approach,
including orthopedic surgeons, infectious diseases specialists, and
microbiologists with an interest and experience in treating these
complex infections.

Relative resistance is conferred by biofilms even when treated
with susceptible antimicrobials, particularly in debridement and
implant retention (DAIR). Antimicrobial decision making needs to
consider not only the minimum inhibitory concentration but also
the minimum biofilm inhibitory concentration and minimum bio-
film bactericidal concentration, if performed.

Staphylococcus, Streptococci, Enterococci, enterobacteriae such
as Escherichia coli or Klebsiella pneumoniae, Pseudomonas, and
Candida are common microorganisms that form biofilms and are
implicated in PJI [16]. The biofilm results in physiological, physical,
and adaptive resistance mechanisms to commonly used antibiotics
in PJI including aminoglycosides, B-lactams, quinolones, and gly-
copeptides [17].

The transcriptional inhibitor rifampicin has demonstrated
consistent antibiofilm activity in Gram positives and is recom-
mended by the Infectious Diseases Society of America (IDSA).
Fluoroquinolones are the first choice as antibiofilm agent in
Gram-negative infections. Colistin and fosfomycin could be alter-
natives [16].

Gram-Positive Periprosthetic Joint Infection/Surgical Site
Infection

The main Gram-positive PJIs are Staphylococcus aureus and
Staphylococcus epidermidis. Methicillin resistance is more common
in S epidermidis (MRSE) compared to S aureus (MRSA). The majority
of clinical studies include both MRSA and MRSE sharing treatment
options. Enterococcus spp. is a rare cause of Gram-positive PJI
including vancomycin-resistant enterococcus.

The initial therapy of MRSA or MRSE PJI infections after
debridement should be directed against planktonic cells and is
currently based in glycopeptides [18]. However, at high inocula
vancomycin’s efficacy is often suboptimal, and in monotherapy
poor clinical data have been published [19]. Interestingly, the
combination of daptomycin plus oxacillin has shown synergy
in vitro MRSA models, also against biofilm-embedded bacteria
[20—22]. Although clinical experience is lacking, this combination
could be used in the first days of MRSA PJI infection.

After the initial acute period (1-2 weeks), targeted antibiofilm
therapy is warranted. As stated previously, rifampicin has excellent
activity against staphylococci in biofilm [23]. There is some indica-
tion that rifampicin in combination with other anti-Staphylococcal
agents may improve the outcome of treatment. This was high-
lighted by one of the few clinical randomized controlled trials on
antibiotic use in PJI. In patients with staphylococcal infection sur-
gically managed by DAIR, the addition of rifampicin to flucloxacillin
or vancomycin for 2 weeks and 3-6 months of ciprofloxacin
improved cure rate from 58% to 100% compared to antibiotics with a
rifampicin placebo [24]. The latter study has been criticized for
consisting of a very small number of patients and its findings have
not been embraced by the entire orthopedic community. It is
important to note that rifampicin monotherapy is associated with a
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high likelihood of resistance and is not recommended by IDSA
guidelines. Many methicillin-resistant staphylococcal PJIs are also
resistant to fluoroquinolones; however, if susceptible it combines
well with rifampicin with good outcomes [24—27]. This combina-
tion has a good bioavailability, activity, and safety, as has been
shown in several clinical studies, and it is considered the first choice
if the Staphylococcus is susceptible to both agents [24,26—29].

There are numerous combinations with rifampicin suggested
in the literature for resistant staphylococci and alternatives if
rifampicin cannot be used. The majority of clinical studies are
noncomparative retrospective reviews. The animal studies and
in vitro studies provide comparative results but there is little
consensus and different methodologies used limit meta-analysis
to make conclusions. A number of studies compare the
following agents in combination with rifampin: vancomycin,
daptomycin, linezolid, cephalosporins, carbapenems, fosfomycin,
tigecycline, minocycline, fusidic acid, and co-trimoxazole. Van-
comycin is often the first line in MRSA/MRSE PJI [30]. A number of
studies have concluded that year-on-year MRSA strains have a
higher vancomycin minimum inhibitory concentration [31,32].
Some studies have demonstrated improved efficacy with vanco-
mycin and rifampicin in vitro [33] but this combination also re-
sults in rifampicin resistance [34]. In comparison to levofloxacin,
daptomycin has favorable results when combined with rifampicin
in vitro. Monotherapy use produced rifampicin and daptomycin
resistance and should be avoided [35,36]. Compared with line-
zolid and vancomycin, animal studies similarly favored dapto-
mycin and rifampicin [36—38]. A similar animal study comparing
linezolid, vancomycin, and daptomycin as a monotherapy and in
combination concluded superiority of the daptomycin-rifampicin
combination [39]. Clinically, noncomparative series using dapto-
mycin achieved good outcomes if the implant is removed with 91%
(10/11) [40] and 100% (22/22) [41] success with 2-stage revision,
respectively. Poor results occurred after DAIR using daptomycin
and rifampicin, with success rates ranging from 50% to 80% (4/5
[40] (6/12, [42]) (9/18, [43]).

The 5th generation cephalosporin, ceftaroline, is an option with
similar activity to vancomycin and improved side effect profile. It is
more effective in combination with rifampicin in MRSA animal
models [44]. An in vitro biofilm study, in contrast, concluded that the
addition of rifampicin to ceftaroline was not beneficial and antago-
nistic with some MRSA strains. They found that ceftaroline and dap-
tomycin combination was the most effective but accepted that in vivo
studies were required before its clinical applicability is known [45].

Tigecycline has been investigated as an alternative in MRSA PJL.
Animal models comparing it to vancomycin as monotherapy or
combined with rifampicin concluded that it was as effective as
vancomycin with rifampicin but tigecycline alone was least effec-
tive [46]. Tigecycline combined with other antimicrobials produces
an indifferent response but has been shown to be effective against
multiresistant Gram-positive and Gram-negative organisms and
could be considered as part of a combination regimen when first
and second-line options are contraindicated [47,48].

Thompson et al compared 10 antibiotic groups in an MRSA an-
imal model. The study did not confirm superiority but that line-
zolid, vancomycin, daptomycin, ceftaroline in combination with
rifampicin were successful at eradicating bacteria. No antibiotic
monotherapy cleared the bacteria [49].

In comparison to the oral antimicrobials—fusidic acid, linezolid,
rifampicin, and minocycline—linezolid was the only monotherapy
effective against biofilm-embedded MRSA [50]. In an animal
methicillin-sensitive Staphylococcus aureus (MSSA) model, line-
zolid with rifampicin prevented rifampicin resistance and demon-
strated superior activity compared to linezolid alone or cloxacillin
with or without rifampicin [51].

The retrospective clinical results of linezolid with rifampicin
following DAIR achieved successful remission in 69% (34/49).
Linezolid was used as second line where previous treatment failed
or due to therapy intolerance [52].

In another retrospective review of 39 Gram-positive cocci PJI,
remission of infection was achieved in 72% using linezolid following
DAIR. Some patients also received rifampicin which in this series
was associated with a higher failure rate of 36% vs 18% which the
authors commented that the rifampicin group had a higher pro-
portion of MRSA, diabetes, and longer symptom duration before
DAIR [53].

Combinations of rifampin plus linezolid have shown an increase
in the antibacterial effect of linezolid in biofilm, and a synergic
activity against MRSA isolates [34,50,51]. Clinical series have
demonstrated acceptable clinical outcome, although the studies are
heterogeneous [52—54]. The possible effect of rifampin in the
metabolism of linezolid is not well established. In vivo studies such
as Gandelman et al [55] showed that the combination is safe and
well tolerated with only a small effect on the clearance of linezolid.

Results of co-trimoxazole and fusidic acid highlight that they
still have a role in resistant staphylococcal PJI. Lower cost and oral
administration are advantageous if the microorganisms are sus-
ceptible. A study of 56 bone and joint infections including 36 with
infected implants received either linezolid or co-trimoxazole in
combination with rifampicin. There was no significant difference in
cure rates with 89.3% success with linezolid and 78.6% with co-
trimoxazole [56]. Co-trimoxazole has historically been an oral
agent active against resistant staphylococcal infections achieving
success in 67% in a prospective study of 39 PJIs. Treatment was
between 6 and 9 months. Device removal improved outcomes but
60% were successful with implant retention [57].

A large retrospective review of 345 S aureus PJIs managed with
DAIR concluded that there was no difference in success between -
lactams or quinolones for MSSA or glycopeptides, co-trimoxazole,
linezolid, or clindamycin for MRSA in a series where 88% were
used in combination with rifampicin. Overall success was 55%, of
which 80% had received rifampicin for over 4 weeks [26].

Options in Rifampicin Resistance

Rifampicin resistance in association with resistant organisms is
associated with inadequate surgical debridement or inadequate
combination antibiotic treatment [58]. The IDSA recommend a 4- to
6-week intravenous (IV) course of anti—biofilm-guided therapy in
rifampicin resistance [12].

Fosfomycin has been investigated as an alternative to rifampicin
in Gram-positive resistant PJI. Vancomycin with fosfomycin or
rifampicin was superior to tigecycline for planktonic bacteria, and
vancomycin combinations with fosfomycin or minocycline were
superior for antibiofilm activity [33]. Fosfomycin with daptomycin
was as effective as daptomycin-rifampicin. Fosfomycin-imipenem
was ineffective and resulted in resistance [38]. An in vitro biofilm
comparison model found higher rifampicin resistance with van-
comycin, teicoplanin, daptomycin, and tigecycline [34]. A similar
model used the same antibiotics, except daptomycin, but combined
them with fosfomycin. They concluded that fosfomycin enhanced
activities of linezolid, minocycline, vancomycin, and teicoplanin,
and was superior to rifampicin combinations [59].

Interestingly, an animal model study suggested that rifampicin
resistance can be transient and that rifampin-based combination
therapy can be effective even if rifampin-resistant bacteria were
previously selected by rifampin exposure [60].

Some studies have even demonstrated that using resistant an-
tibiotics in combination with a nonresistant antibiotic may be
effective. Combining cloxacillin with daptomycin was active in an
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MRSA animal model [20] and was as effective as cloxacillin with
rifampicin in an MSSA model in rifampicin resistance [21]. In vitro
and in vivo laboratory studies have demonstrated synergy between
daptomycin and B-lactams or carbapenems including nafcillin,
cefotaxime, amoxicillin-clavulanic, and imipenem. Combination
therapy prevented daptomycin resistance [22]. An in vitro MRSA
biofilm study concluded that neither daptomycin nor linezolid was
active against biofilm-embedded bacteria; however, in combina-
tion they were successful [61]. In other studies, linezolid mono-
therapy exhibited excellent inhibitory effects against biofilm-
embedded MRSA [34,59]. There is considerable literature on the
use of linezolid in monotherapy, showing high success rates
[53,59—64]. Its excellent bone and tissue penetration is one of the
main reasons for this. Therefore, it could be an alternative in
rifampin-resistant staphylococcal infections.

Drug Interaction and Concentration Levels

Although the majority of studies demonstrate a benefit from
combination therapy, drug interactions and pharmacokinetics must
be considered. A randomized controlled trial comparing fusidic
acid with rifampicin vs vancomycin was stopped. The authors
identified that the fusidic acid concentrations were lower than
expected, and at low levels rifampicin resistance occurred [65]. In
contrast, a study of 62 patients taking rifampicin and fusidic acid
demonstrated pharmacokinetics resulting in high drug exposure
|66]. Decreased trough clindamycin concentrations were associated
with concomitant rifampicin use in an observational study of 61
patients infected with Gram-positive organisms [67]. A crossover
study into the pharmacokinetics of linezolid in combination with
rifampicin in 16 healthy adults demonstrated an interaction
resulting in increased linezolid metabolism resulting in a lower
concentration for the dosing interval [55].

Enterococcus

Enterococcal PJl is rare (3%-10%) and associated with high failure
rates [68]. Unlike rifampicin in staphylococcal PJI, there is no
antibiofilm agent active against enterococcus. Strains can be peni-
cillin susceptible, penicillin resistant, or vancomycin resistant. IDSA
guidelines recommend combination therapy with aminoglyco-
sides. Typical combinations of gentamicin with ampicillin for
penicillin susceptible, vancomycin for penicillin resistant, and
linezolid or daptomycin for vancomycin resistant are recom-
mended. In vitro and animal studies of Enterococcus faecalis had
cure rates of 17% with vancomycin, 25% with daptomycin, 33% with
vancomycin and gentamycin, and 55% with daptomycin and gen-
tamycin [69]. Fosfomycin with gentamicin was shown to be supe-
rior to vancomycin and daptomycin with eradication of E faecalis in
42%. Combinations of cephalosporins, ampicillin, aminoglycosides,
daptomycin, and linezolid are options for vancomycin-resistant
enterococcus PJI but there is no consensus across the literature
and clinical series are too small and heterogenous to make firm
conclusions on antibiotic therapy. Due to the low success treating
these resistant organisms that lack antibiofilm therapy, DAIR is
unlikely to work and aggressive surgical management is required.

Gram-Negative Periprosthetic Joint Infection/Surgical Site
Infection

In total, 10%-30% of PJIs are caused by Gram-negative bacteria.
These include E coli, Pseudomonas aeruginosa, Klebsiella species,
Proteus species, Pasteurella species, and Serratia spp [70,71].
Appropriate antibiotics include cephalosporins, carbapenems, and
fluoroquinolones often in combination, directed by antibiofilm

including fluoroquinolones in the combination when susceptible.
Colistin and fosfomycin have good biofilm activity and can be
used in combination, particularly against fluoroquinolone-
resistant organisms. Extended-spectrum f-lactamase producing
Enterobacteriaceae, Klebsiella pneumoniae carbapenemase-produc-
ing (KPC) Enterobacteriaceae, and Pseudomonas strains are resistant
to a variety of antibiotics and are difficult to eradicate.

Like the biofilm in Gram-positive organisms, many Gram-
negative organisms demonstrate resistance to phagocytosis when
adherent to the surface of implants even when treated with sus-
ceptible antibiotics. Clinical outcomes of Gram-negative PJI in the
literature vary between high rates of success, even following DAIR
or small series of very difficult to treat infections where despite
combination antibiotics and aggressive surgical management with
staged revision they have low rates of success. Fluoroquinolone
sensitivity or resistance explains the dichotomy. Fluoroquinolones
have good activity against E coli due to efficacy against nongrowing
and adherent bacteria [72]. A retrospective series of 17 Gram-
negative infections managed with DAIR achieved successful
remission in 15. Antibiotic use included IV cephalosporins or car-
bapenems initially followed by medium-term oral ciprofloxacin.
The authors concluded that the ciprofloxacin provided good anti-
biofilm activity [73]. A retrospective review of 24 Gram-negative
bone infections successfully eradicated infection in 79% using a
combination of cefepime and fluoroquinolone. Approximately half
were treated with device retention and half with removal but there
was no difference in success [74]. Ceftazidime and ciprofloxacin
combination therapy was effective with implant retention in 24
pseudomonas infected implants [75]. A large retrospective series of
242 Gram-negative PJI infections also demonstrated that including
fluoroquinolones in the combination therapy had higher successful
rates [76].

Carbapenem-resistant K pneumoniae has advanced mechanisms
to rapidly generate resistance on therapy, including colistin and
aminoglycosides. A failure to respond to treatment warrants not
only a change in antibiotics but repeated debridement and new
samples for sensitivity testing [77]. An animal model of KPC-
producing Enterobacteriaceae demonstrated that synergistic com-
binations of tigecycline with rifampicin or gentamicin were effec-
tive, whereas there was antagonism using a combination of
tigecycline with meropenem or colistin [78].

An in vitro and animal study of fluoroquinolone-resistant E coli
comparing fosfomycin, colistin, tigecycline, and gentamycin, alone
and in combination, concluded that the highest cure rate was with
fosfomycin and colistin. Fosfomycin was the only monotherapy able
to eradicate extended-spectrum f-lactamase-producing E coli bio-
films [79].

IDSA guidelines recommend combination therapy for Pseudo-
monas PJI due to the limited antibiotic options [12]. In vitro studies
combining fluoroquinolones with B-lactams or aminoglycosides
reduce the risk of resistance to Pseudomonas and Acinetobacter
spp [80,81]. Multidrug-resistant Pseudomonas was more effectively
treated by combination therapy of colistin with -lactams (cure rate
11/15) compared to monotherapy (cure rate 6/19) [82].

Interestingly, combining drugs even if one of them is resistant
can be associated with antimicrobial activity. An in vitro study of
biofilm and planktonic multidrug-resistant P aeruginosa concluded
that colistin in combination with doripenem was effective against
both carbapenem susceptible and resistant strains and reduced
colistin resistance. The role of the carbapenem is to prevent colistin
resistance, not treat the resistant organism [83].

Some newly approved antibiotics for resistant Gram-negative
infections utilize the synergy of antibiotic combinations. Ceftazi-
dime/avibactam and ceftolozane/tazobactam combine second-
generation fB-lactamase inhibitors with cephalosporins. In vitro
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activity is demonstrated against multiple drug-resistant Gram-
negative organisms including Pseudomonas and KPC-producing
Enterobacteriaceae. Clinically, they are licensed for ventilator-
associated pneumonia, complicated intra-abdominal infections,
and complicated urinary tract infections [84]. Currently, there are
no studies specifically using these novel drugs in PJI.

Fungal Periprosthetic Joint Infection

Less than 1% of PJIs are due to fungal infections. They are often
associated with multiple revisions for infection, immunosuppres-
sion, and prolonged antibiotic therapy [85,86]. Candida is the most
common species and is known to produce a complex biofilm
conferring rapid resistance. IDSA guidelines recommend flucona-
zole initially but ultimately based on antifungal susceptibility
testing. Antibiofilm activity can require high antifungal doses
associated with systemic toxicity, therefore staged arthroplasty and
use of antifungal bone cement is routinely advocated. Amphoter-
icin B [87] or voriconazole [88] is heat stable and achieve high local
concentrations.

Question 3: Should PJI caused by C. acnes be treated the same
as other bacterial causes of PJI?

Recommendation:

Yes. Periprosthetic joint infections (PJI) caused by C. acnes
should be treated in the same fashion as other causes of PJI.

Level of Evidence: Moderate

Delegate Vote: Agree: 94%, Disagree: 4%, Abstain: 2% (Super
Majority, Strong Consensus)

Rationale:

Cutibacterium acnes is a nonspore-forming, Gram-positive,
facultative bacillus classified as an anaerobe with aerotolerant
properties [89—91]. C acnes has previously been categorized as a
laboratory handling contaminant and considered nonpathogenic,
largely due to the presumed commensal nature of the bacterium, as
well as identification on normal skin flora and maintenance of the
microbiome [90,92]. Despite previous thinking, C acnes is becoming
increasingly recognized as an opportunistic and pathogenic or-
ganism in orthopedic surgery. C acnes often presents in a subacute
or delayed manner due to an indolent clinical presentation and
unreliable utility of classically used markers of infection; however,
this organism may represent 6%-10% of orthopedic infections
[90,93—97]. It is speculated that C acnes colonizes the surgical site
at the time of prosthesis implantation, and grows unrecognized by
the body through biofilm formation [98—100]. In the shoulder, the
clinical and traditional inflammatory laboratory indicators of
infection with C acnes are often within normal limits; however, its
presentation during hip and knee arthroplasty infection may be
more overt with classical signs and symptoms of infection [96,101].
Accurate identification of C acnes requires long hold cultures up to
14 days, which is likely why this organism has previously been
under-appreciated as the cause of orthopedic infections [90,91].

In the orthopedic literature, C acnes has been identified as both a
possible commensal organism observed at the time of surgery and
as a definite pathological bacterium implicated in orthopedic
implant-related infections. One prospective study evaluating
intraoperative cultures showed C acnes to be present in 8.5% of skin
cultures, 7.6% of superficial cultures, and 13.6% of deep cultures at
the time of primary shoulder surgery [102]. The prevalence of C
acnes in patients undergoing revision shoulder arthroplasty has
been shown to exceed that of other common offending organisms,
with a recent study showing 38% of patients having a positive C
acnes culture [103]. A recent study utilizing next-generation
sequencing in patients presumed to be undergoing aseptic revi-
sion hip and knee arthroplasty isolated microbial DNA in 27% of
patients with C acnes being the most prevalent organism [104].

Previous work has attempted to distinguish between these
commensal and pathogenic strains through phylotype associations,
and phenotypic markers of the bacteria such as hemolysis
[105,106]. A distinct pathogenic phenotype has yet to be clearly
associated with true clinical infections; however, phylotypes IB and
Il have most commonly been implicated in orthopedic infection
[105]. These phylotypes have varying adaptive virulence properties
that may influence pathogenic potential, including the ability to
degrade and invade host cells, produce an enhanced host inflam-
matory response, form biofilms, and demonstrate antibiotic resis-
tance [107—109]. Beta-hemolytic activity has been noted in certain
strains of C acnes and may be directly correlated with the bacteria’s
pathogenicity [106]. The hemolytic Christie-Atkins-Munch-
Peterson factor is found in the C acnes genome and functions as a
toxin to host cells, which may be responsible for this observed beta-
hemolytic activity [108,110]. A C acnes hemolytic phenotype
observed on Brucella blood agar media has been shown to be a
marker of definite infection with 100% specificity and 80% sensi-
tivity along with an increased pattern of antibiotic resistance
[106,111]. Suggestions of enhanced virulence of C acnes have been
implicated when it serves as a coinfectant with other bacterial
species, which may be why at times it is found in polymicrobial
cultures, and erroneously characterized as a contaminant in some
clinical situations [112,113].

Pathogenic C acnes strains are well known to form a robust
biofilm on implant surfaces resistant to antibiotic penetration,
similar to more commonly recognized bacterial pathogens
[108,114,115]. Implant biofilm is difficult to treat without implant
removal, and reported treatment success of a C acnes PJI has been
variable with treatments involving implant or polyethylene reten-
tion having the poorest results [101,116,117].

Currently, there are no prospective studies evaluating varying
treatment strategies of C acnes orthopedic infection, with most
studies being retrospective in nature. Retrospective studies evalu-
ating various treatments for shoulder, hip, knee, and spine C acnes
infection have reported variable success [101,116—118]. Studies
evaluating total shoulder arthroplasty and upper extremity infec-
tion have shown good outcomes with treatments involving 1- or 2-
stage revision procedures with success rates ranging from 74% to
95% [93,101,119,120]. One retrospective analysis found that
nonsurgical treatment with 4-6 weeks of IV antibiotics led to 67% of
patients not requiring subsequent surgical management compared
to 71% of patients not requiring further surgery after initial surgical
management [121]. Two studies evaluating all orthopedic in-
fections caused by C acnes reported a 100% failure rate when partial
or no implant removal was performed with success rates ranging
from 62% to 75% when 1- and 2-stage exchanges were performed
[116,117]. A similar retrospective study evaluating hip, knee, and
shoulder arthroplasty PJI with C acnes showed a 95% success rate in
total shoulder arthroplasty PJI treated with a 2-stage procedure,
while those treated with an irrigation and debridement with
component retention (I&D) had a 37% success rate [101]. Hip and
knee success rates in the same study were lower when a 2-stage
procedure was utilized at 67% and 64%, respectively. However,
other studies have reported success rates as high as 94%-100% with
a 2-stage exchange for hip and knee PJI with C acnes [101,118]. One
retrospective study specifically evaluated C acnes total knee
arthroplasty (TKA) PJI treated primarily with 2-stage exchange and
1&D with liner exchange compared to methicillin-sensitive staph-
ylococcal TKA PJI. This study showed similar success rates between
treatment groups and suggested a PJI treatment strategy similar to
MSSA TKA PJI be performed for C acnes TKA PJI [96].

C acnes has also been noted as a common pathogen in spine
surgery with one large study showing C acnes representing 9.7% of
positive cultures [97]. Similar treatment strategies with partial and
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complete hardware exchange have been evaluated in the literature
with patients having partial implant removal resulting in inferior
infection eradication rates compared to those patients who had
complete exchange of spinal components [97,122].

C acnes is usually susceptible to beta-lactams, quinolones, clin-
damycin, and rifampin, but resistance is emerging and antibiotic
susceptibility testing should be considered for PJI [111]. There is no
general consensus on how to treat these infections. Many recom-
mend 3-6 months of antibiotic treatment, including 2-6 weeks of IV
treatment with a beta-lactam, but no randomized controlled trials
have been performed and some studies favor shorter treatment
durations [108]. Given the lack of randomized controlled trials,
following the Infectious Diseases Society of America guidelines of
4-6 weeks duration is recommended [123].

The role of rifampin is also unclear. An in vitro study showed
activity against C acnes biofilms [124]. One low-quality retrospec-
tive cohort study in patients with a primary or revision joint
arthroplasty of the shoulder, hip, or knee evaluated the role of
rifampin in combination therapy and showed no difference in
treatment success [125]. There are currently no randomized
controlled human studies on the efficacy of rifampin in combina-
tion antimicrobial treatment for C acnes PJI. Given the limited data,
the addition of rifampin to the treatment regimen is not recom-
mended at this time.

Although no prospective studies are currently available
regarding the optimal treatment strategy for C acnes, careful review
and synthesis of the available literature suggest that C acnes be
considered a true pathogen when the appropriate constellation of
findings are present. When C acnes PJI is identified, treatment al-
gorithms should model after those of other invasive offending or-
ganisms. Caution should be taken when treating C acnes PJI without
explantation of exchangeable components or efforts to eliminate
biofilm on retained implants due to the low success rates of simple
1&D with component retention.

Question 4: What is the most effective antibiotic in the
treatment of Cutibacterium acnes PJI?

Recommendation:

Unknown. High rates of susceptibility to narrow spectrum
beta-lactams make these a good initial intravenous option,
though the optimum oral switch is not known. The role of
rifampicin is controversial. Prospective clinical studies are
required to determine the optimal antimicrobial therapy for
C. acnes PJL.

Level of Evidence: No Evidence

Delegate Vote: Agree: 93%, Disagree: 2%, Abstain: 5% (Super
Majority, Strong Consensus)

Rationale:

Cutibacterium acnes is an anaerobic Gram-positive bacillus and a
common skin commensal found deep in sebaceous glands and hair
follicles. As well as being commonly implicated in acne vulgaris, it
is a well-recognized pathogen of device-related infection including
prosthetic joints [108,116,126,127].

The ability of C acnes to form biofilm is a major virulence factor
in the development of these infections, including PJI, and is an
important consideration for optimizing treatment strategies.
Management should follow well-recognized guidelines of a com-
bination of surgery and targeted antibiotic therapy [68,128,129],
although this has been challenged by at least one retrospective
analysis [121]. Pragmatically, however, without doing prospective
studies and controlling for the surgery performed, the duration of
therapy, and individual host factors, comparisons of different
antibiotic regimens in the real world are very difficult.

This problem is compounded by the difficult issue of deter-
mining the significance of cultured C acnes from orthopedic spec-
imens, as it is a common and well-recognized contaminant. It has

been shown to be present in fluid washed across the skin incision
[100], has been found on surgeons’ gloves after handling the sub-
dermal layer [130], and is not reliably removed from the skin by
surgical skin antisepsis [131]. The multiple sampling method of
Atkins et al [132] is commonly used to aid interpretation of the
significance of C acnes isolates, with one specimen positive out of 3-
5 usually being deemed a contaminant [132]. The recommended
duration of incubation of enrichment broths has been extended in
recent years to 10-14 days to improve the pick-up rate of relatively
slow growing C acnes in these samples. By increasing the isolation
of significant isolates, however, the rate of contaminants also in-
creases and requires careful interpretation [133]. It has been sug-
gested that those isolated from true infections flag earlier than
those that represent contamination. Sonication is recommended by
some to improve pick-up rates of C acnes associated with biofilm
[134]. Some authors have gone further, by creating scoring systems
to aid identification of true C acnes infections [116,127].

For these reasons, accurate identification of C acnes PJIs
retrospectively is fraught with difficulties, and thus interpretation
of the outcome data comparing treatment strategies is very
limited. The clinical details are imperative to aid interpretation. As
well as varying in the clinical information available, retrospective
studies also often span many years or decades, and straddle
changes to sampling methods, culture methods, and recom-
mended duration of enrichment cultures. These differences
further limit the ability to draw detailed comparisons between
different interventions.

In vitro susceptibilities of C acnes are reported widely. Surveil-
lance studies show that it remains susceptible to many antibiotics
commonly used in the treatment of bone and joint infection, but
with increased and variable resistance to macrolides, clindamycin,
tetracyclines, and trimethoprim-sulfamethoxazole. A European
surveillance study showed wide variations in the rates of resistance
across Europe, confirming the need to undertake susceptibility
testing for individual isolates [135] and this has been replicated in
other smaller series [135,136]. Looking at isolates from clinical
specimens taken at shoulder surgery, Crane et al showed that rates
of resistance to beta-lactams (such as penicillin, amoxicillin, cefa-
zolin, ceftriaxone) remained very low [ 11,137]. However, they found
slightly higher minimum inhibitory concentrations to vancomycin,
and taking that information with the minimum biofilm eradication
concentration from other studies [ 115,124 ], vancomycin may be less
favorable than alternatives in the context of biofilm. This study also
looked at quinolones (ciprofloxacin and moxifloxacin) but not
levofloxacin, and showed high rates of susceptibility.

It is well recognized that the susceptibility of microorganisms is
dramatically reduced in biofilms. For infections with staphylococci,
there is good evidence for the use of rifampicin in combination
therapy for its biofilm effect. The use of dual therapy with rifam-
picin for C acnes infections is theoretically attractive, although there
is controversy in the literature. Bayston et al [128] found that
linezolid plus rifampicin led to relapse-free eradication after 14
days compared to linezolid alone. Interestingly, in this study,
penicillin alone was as effective as linezolid + rifampicin, but the
effect of rifampicin + penicillin was not examined. Furustrand Tafin
et al [124] in 2012 used an experimental foreign-body infection
model to determine minimum inhibitory concentration and mini-
mum biofilm eradication concentration with and without rifam-
picin for C acnes from cage fluid and from explanted cages. There
was good activity of all antimicrobials tested for the planktonic
forms, but rifampicin was needed for activity in the biofilm. They
used an in vivo animal model to evaluate susceptibility to levo-
floxacin, vancomycin, daptomycin, and rifampicin; the highest cure
rate was found with daptomycin and rifampicin (63%) followed by
46% for vancomycin and rifampicin combination. Emergence of
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rifampicin resistance associated with the presence of the rpoB gene
has however been shown to occur in vitro [138].

Combination therapy for C acnes has been further examined
in vitro by Khassebaf et al [135] who took C acnes isolated from
orthopedic implant infections and carried out susceptibility testing
in addition to looking for synergistic, additive, and antagonistic
effects of combinations. None of the antimicrobials examined were
synergistic with each other and antagonistic effects were rare.
Interestingly, the combination of rifampicin + benzylpenicillin
showed an additive effect on almost 50% of isolates tested. How-
ever, a retrospective cohort study by Jacobs et al [125] showed no
significant difference in success after 2 years between groups
treated with combination antimicrobial treatment including
rifampicin (88%) or not including rifampicin (82%). The most used
antimicrobial in combination with rifampicin was clindamycin.

The performance of these antimicrobials in clinical studies is not
easy to assess and there are very few published good quality studies
with no prospective studies identified and limited utility of retro-
spective studies. Over a decade ago, Zeller et al [118] conducted a
retrospective cohort study of 50 patients with C acnes PJI. Treat-
ment involved surgery with antibiotics for the majority of patients.
Intravenous therapy with cefazolin and rifampicin was adminis-
tered to 24 of 50 patients and clindamycin with rifampicin to 11
cases for a duration of 5 + 2 weeks followed by oral step down for a
further 16 + 8 weeks. Oral regimens were similar to the intravenous
regimes: cephalexin + rifampicin or clindamycin + rifampicin
[118,139].

Rienmiiller’s retrospective review of a tertiary infection center
database included 24 cases of C acnes PJI over 14 years [140]. The
strength of this study, despite being retrospective, was the use of
contemporaneous clinical diagnosis of infection alongside the
microbiological diagnosis. All patients underwent surgery and were
treated with antibiotics but the specifics of antimicrobial treatment
are not given, other than stating that they followed recommenda-
tions by Zimmerli et al [68] and were guided by the specific anti-
biogram. Lutz et al [ 116] report 52 cases over 7 years but differences
in outcome between antimicrobial regimes were not given.

In summary, there are no randomized controlled trials or
formally conducted comparative studies of specific antibiotic
combinations for the treatment of C acnes PJI. Publications are
confounded by difficulties and variations in definitions of infection,
likely mixing true infections with contaminated cases. Surveillance
studies suggest that C acnes remains highly susceptible to beta-
lactams which are attractive from an antimicrobial stewardship
point of view and are commonly used and recommended in In-
fectious Diseases Society of America guidelines
[12,68,125,127—129,141]. Increasing rates of resistance for clinda-
mycin and doxycycline are seen and antimicrobial therapy must
therefore be based on the susceptibility testing of infecting path-
ogens determined using accredited methods; additive or syner-
gistic testing might be helpful but the utility of this needs
corroboration in clinical studies. Determining an appropriate tar-
geted regimen at this stage can only be based on in vitro suscep-
tibilities, on knowledge of oral bioavailability and bone penetration,
and on an individual risk/benefit assessment for the use of rifam-
picin and other agents. Both the best oral antimicrobial and the role
of rifampicin as part of combination therapy remain unclear, and
well-conducted prospective randomized controlled trial studies are
needed to help answer these questions.

Question 5: What antibiotic therapy and duration should be
used in SSI/PJI caused by Mycobacterium tuberculosis?

Recommendation:

Mycobacterium tuberculosis (TB) periprosthetic joint infec-
tion (PJI) must be treated in collaboration with an infectious
diseases specialist noting that the duration of treatment

(minimum six months and up to two years) and the type of
antimicrobials (usually a combination of four drugs) is deter-
mined based on the resistance profile of the pathogen.

Level of Evidence: Limited

Delegate Vote: Agree: 96%, Disagree: 1%, Abstain: 3% (Unan-
imous, Strongest Consensus)

Rationale:

The review of the available literature on periprosthetic joint
infection (PJI) caused by Mycobacterium tuberculosis (TB) is mainly
based on retrospective cohort studies and case reports. Our
exhaustive search of the literature revealed a total of 44 publica-
tions reporting on 62 patients with PJI caused by TB, over a period
of 40 years [142—160][161—185].

Eight of the studies did not report on the type of antibiotic
treatment utilized [142—149]. In other studies, reporting on the
antimicrobial treatment, 3 patients were treated using a 2-drug
combination regimen [150] and 23 patients received a 3 or 4-
drug therapy [151—173]. Four patients were treated with more
than 4 drugs [174—177]. Regarding the length of treatment [178], it
was 6-9 months in 10 patients [179], 9-18 months in 21, and more
than 18 months in 19 patients [180]. Based on the literature, only 3
patients had less than 6 months of antimicrobial therapy [181], but
this may relate to the fact that 2 patients died during treatment.

The date related to surgical treatment was also evaluated.
Eleven patients underwent debridement and retention of the
prosthesis [182], 38 had resection arthroplasty and reimplantation
[183], while 13 patients had no surgical treatment [184].

Due to the scarcity of the data related to PJI caused by M
tuberculosis, we are unable to draw definitive recommendation for
the antimicrobial treatment of surgical treatment for that matter.
However, based on the recommendations of World Health Orga-
nization [185] for treatment of osteomyelitis caused by drug-
susceptible TB, we feel that the 4-drug regimen (H, R, P, E) for 2
months followed by a 2-drug regimen (H, R) for a total treatment
duration of 6-9 months (ie, 4-7 months, 2 drugs) may be the most
optimal management of PJI caused by drug-susceptible M
tuberculosis.

Question 6: Which antifungal agents are heat stable and
what dose of these agents should be used in cement spacers for
fungal PJI?

Recommendation:

Amphotericin B, preferably the liposomal formulation, and
voriconazole are heat stable antifungal agents that are available
in powder form and can be added to PMMA cement for spacers
during treatment of patients with fungal PJI. The optimal dose
of the antifungals that need to be added to a spacer is not
known. However, in the literature the dose of amphotericin B
ranges from 150 to 1500 mg per 40 g cement and the dose of
voriconazole ranges from 200 to 1000 mg per 40 g cement.
Antibiotics combined with antifungals should be considered for
treatment/prevention of coexisting fungal and bacterial
infection.

Level of Evidence: Consensus

Delegate Vote: Agree: 92%, Disagree: 2%, Abstain: 6% (Super
Majority, Strong Consensus)

Rationale:

Fungi are known to form biofilms on implant and tissue surfaces
with associated tolerance to antifungal agents. Data on the anti-
fungal concentrations needed to achieve the minimum biofilm
eradication concentration (MBEC) are limited. Parenteral/systemic
administration of antifungals can achieve minimum inhibitory
concentration but not MBEC, which is 10s-100s of times higher
than the minimum inhibitory concentration for most antifungal-
pathogen pairs. Local delivery is therefore required for most cases
because it is expected that at a minimum, some biofilm fragments
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Table 1
Summary of Literature Pertaining to the Use of Antifungal-Loaded Cement Spacers.
Year  Lead Author Antifungal Dose (mg/40 g  Study Design Follow-Up # Infection Organism
Cement) (mo) Free (%)
2018 Burgo [198] Voriconazole and vancomycin Not reported Case report 24 1 (100%) Trichosporon inkin
2017 Daniele [199] Voriconazole V-200 Case report 0 0 (0%) Scedosporium inflatum
2016 Geng [197] Amphotericin A-200 8 patients retrospective  35-78 7 (87.5%) 6 Candida species, 1
B + vancomycin + meropenem review Aspergillus, 1 mold
2015 Wang [200] Amphotericin B A-100 5 patients retrospective 46 5 (100%) Candida species in 4 cases
review and Pichia anomala in 1 case
2015 Ong [201] Amphotericin B A-150 Case report 24 1(100%)  Arthrographis kalrae
2015 MacLean [202] Amphotericin B A-1500 Case report 24 1 (100%) Blastomycosis
2014 Skedros [203] Amphotericin B A-500 Case report 12 0 (0%) Candida glabrata and
Serratia marcescens
2013 Reddy [204] Amphotericin B Not reported Case report 24 1 (100%) Candida tropicalis
2013  Deelstra [205] Amphotericin B and A-250 V-1000  Case report 72 1(100%)  Candida albicans
voriconazole
2013  Ueng [206] Amphotericin B + vancomycin ~ Not reported 16 patients 41 8 (50%) 9 C albicans, 6 Candida
retrospective review parapsilosis, 1 C tropicalis
2012 Hwang [207] None Systemic 30 patients 52 28 (93%) 24 were Candida species
Spacers had 2 g vancomycin/ retrospective review
batch no antifungal
2012 Hall [208] Amphotericin B A-150 Case report 24 1(100%)  Aspergillus
2012 Denes [209] Voriconazole V-300 Case report Not reported Not reported C glabrata
2011 Wuand Hsu [210] Amphotericin B A-1200 Case report 12 1 (100%) C albicans
2011 Gottesman- Itraconazole 1-250 Case report 24 1 (100%) Pseudallescheria boydii
Yekutieli [211]
2009 Wilkins [212] Amphotericin B Not reported Case report 36 1(100%)  Rhizopus
2009 Azzam [86] Amphotericin B in 5 of 29 Not reported 29 patients 45 9/19 (47%) 20 C albicans, 4 C
spacers retrospective review reimplants parapsilosis, 3 C albicans + C
parapsilosis, 3 non-Candida
species
2004 Gaston and Amphotericin B + vancomycin  Not reported Case report 9 0 (0%) C glabrata amputation
Ogden [213]
2002 Phelan [214] Fluconazole F-200 4 patients retrospective 60.5 1(25%) Candida
review
2001 Marra [215] Amphotericin B A-187.5 Case report Not reported 0 (0%) C albicans

remain in the wound following debridement. The local delivery
vehicle that is most commonly used is polymethylmethacrylate
(PMMA) formed into a spacer. To incorporate sufficient antimicro-
bials for the required local release, the antimicrobial must be in
powder form because sufficiently high concentrations are not
currently available in solution form. Echinocandin antifungals (ie,
caspofungin and micafungin) are available in powder form and are
water soluble [186], but their heat stability is not established and
there are limited data on release from PMMA [187]. 5-Flucytosine is
also available in powder form, but 5-flucytosine does not retain its
bioactivity when incorporated into PMMA [188]. Amphotericin B
and voriconazole are available in powder form [189—191].
Amphotericin B is heat stable and voriconazole has limited heat
degradation over the polymerization time for PMMA [192—194].
Both have release data available and are active when eluted from
antifungal-loaded bone cement [87,88,191]. However, both
amphotericin B and voriconazole are not water soluble [195,196].
Amphotericin B is formulated with deoxycholate as a solubilizing
agent. Liposomal formulations are also available in powder form
and act to increase the release of amphotericin B from PMMA by an
order of magnitude greater than amphotericin B deoxycholate. In
total, 800 mg of liposomal amphotericin B (AmBisome) per 40 g of
cement has been found to maximize amphotericin B release and
not cause excessive mechanical weakness [87]. Toxicity studies are
reported with cell injury in vitro, but no tissue injury in vivo at
concentrations as high as 1000 pg/mL [86]. Voriconazole is
formulated with cyclodextrin as a solubilizing agent [197]. The
cyclodextrin powder is 16 x the mass of voriconazole, resulting in a
large enough powder volume to cause weakening of the cement
[88]. In total, 300 mg of voriconazole per 40 g of cement leads to
high levels of release, but also weakens compressive strength

below the 70 MPa ISO 5833 standard for normal implant fixation.
When the dose is increased to 600 mg per 40 g of cement, there is
further weakening of compressive strength to about 20 MPa after
elution [88]. For spacer fabrication, some level of attention needs
to be paid to structural integrity, and the use of metal reinforce-
ment within the cement may help to minimize the risk of spacer
fracture.

Currently, there are limited data on the local tissue levels
needed, the duration of MBEC exposure required, and the elution
characteristics necessary to eradicate fungi from biofilm fragments.
Clinical judgment must be used when choosing and dosing anti-
fungal agents. The culture sensitivity in addition to the potential for
antifungal toxicity must be weighed with the patient’s medical
history. Case reports and retrospective case series are valuable to
consider in conjunction with the elution and mechanical data, and
the clinical factors specific to individual cases when dosing de-
cisions are being made. Thorough debridement remains the foun-
dation of PJI management, including fungal PJI. High-quality
prospective clinical trials will be needed to determine clinical
outcomes when local tissue level targets and thorough debride-
ment are achieved.

Studies and case reports on the use of antifungal-loaded bone
cement spacers are provided in Table 1. In these reports, ampho-
tericin B and voriconazole were the dominant antifungals used in
spacers with the dose of amphotericin B ranging from 150 to 1500
mg per 40 g cement and the dose of voriconazole ranging from 200
to 1000 mg per 40 g cement. Most report clinical success when
used in conjunction with thorough debridement and systemic an-
tifungals; however, there are reports of acceptable outcomes even
when antifungals were not used in any or all of the spacers
[198,199,207].
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